Non-local Means for Stereo Image Denoising Using Structural Similarity
نویسندگان
چکیده
We present a novel stereo image denoising algorithm. Our algorithm takes as an input a pair of noisy images of an object captured form two different directions. We use the structural similarity index as a similarity metric for identifying locations of similar patches in the input images. We adapt the Non-Local Means algorithm for denoising collected patches from the input images. We validate our algorithm on various stereo images at various noise levels. Experimental results show that the denoising performance of our algorithm is better than the original NonLocal Means and Stereo-MSE methods at low noise level (σ 20).
منابع مشابه
Denoising Multi-view Images Using Non-local Means with Different Similarity Measures
We present a stereo image denoising algorithm. Our algorithm takes as an input a pair of noisy images of an object captured from two different directions (stereo images). We use either Maximum Difference or Singular Value Decomposition similarity metrics for identifying locations of similar searching windows in the input images. We adapt the Non-local Means algorithm for denoising collected pat...
متن کاملA New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملJames-Stein Type Center Pixel Weights for Non-Local Means Image Denoising
Non-Local Means (NLM) and its variants have proven to be effective and robust in many image denoising tasks. In this letter, we study approaches to selecting center pixel weights (CPW) in NLM. Our key contributions are: 1) we give a novel formulation of the CPW problem from a statistical shrinkage perspective; 2) we construct the James-Stein shrinkage estimator in the CPW context; and 3) we pro...
متن کاملFast blockwise SURE shrinkage for image denoising
In this letter, we investigate the shrinkage problem for the non-local means (NLM) image denoising. In particular, we derive the closed-form of the optimal blockwise shrinkage for NLM that minimizes the Stein’s unbiased risk estimator (SURE). We also propose a constant complexity algorithm allowing fast blockwise shrinkage. Simulation results show that the proposed blockwise shrinkage method im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015